0%

论文信息

题目:

Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks

会议:

KDD 2020

作者:
image-20201007210738438

Introduction

摘要

多元时间序列建模一直是一个热门主题,吸引了来自不同领域的研究人员,包括经济、金融和交通。多元时间序列预测背后的一个基本假设是,其变量相互依赖,但仔细观察,可以说现有方法无法完全利用变量对之间的潜在空间依赖性。同时,近年来,图神经网络(GNN)在处理关系依赖方面表现出了很高的能力。GNN需要用于信息传播的定义明确的图结构,这意味着它们无法直接应用于事先不知道相关性的多元时间序列。在本文中,我们提出了一个专门为多元时间序列数据设计的通用图神经网络框架。我们的方法通过图形学习模块自动提取变量之间的单向关系,可以轻松地将诸如变量属性之类的外部知识整合到其中。进一步提出了一种新颖的混合跳跃传播层和一个扩张的起始层来捕获时间序列内的空间和时间依赖性。在端到端框架中共同学习图学习,图卷积和时间卷积模块。实验结果表明,我们提出的模型在4个基准数据集中的3个方面优于最新的基线方法,并在提供额外结构信息的两个交通数据集上与其他方法相比具有同等的性能。

Read more »